Indigenous Algae: Potential Factories for Biodiesel Production

Dheepak Maharajh

our future through science

Introduction

- Fossil fuels Environmental damage
- Crude Oil Prices peak ~ \$140
- Current biodiesel sources
 - Oil Seed crops
 (eg. 600% of US arable land required to
 fulfil biodiesel requirements from
 - Soya) First generation – low yields Food competitive
 - Arable land use
 - Animal Fat and used cooking oils Limited quantities Questionable quality
- Algal potential

Algae feedstock

- Algae produce up to 70% lipid/DCW
- algae are more productive than terrestrial plants
- algae do not use arable land or affect food security
- capable of using CO₂ flue gas and wastewater effluent streams as nutrients
- address global environmental initiatives (Kyoto protocol)
- spent biomass has potentially high value
- energy security

our future through science

© CSIR 2006

Challenges facing South Africa

- Economic growth energy shortages
- Less developed countries larger virgin environmental footprint
- Protecting indigenous natural resources global responsibility
- Economic burden on fuel imports- Affects balance of payments
- Food shortage still prevalent in developing countries
- Arable land shortage SA 12% and lower yield
- Human nutrition
- Unemployment skills shortage
- Waste water remediation
- Limited R&D funding

© CSIR 2006

Algae to address challenges

00

care

Environment Algal Technologies

Energy

Socio-Economic Challenges

What do we know about Algal cultivation?

Can we cultivate algae at large scale?

Can we harvest algae?

© CSIR 2006

Can we extract oil from algae?

our future through science

© CSIR 2006

Can we make biodiesel from algal oil?

 Yes – 7 Jan 2009, Boing 737 test flew a 2 hr flight on algal fuel.

• Why is not commercial yet?

• NOT FINANCIAL SUSTAINABLE YET

Slide 9

© CSIR 2006

Can it be financially feasible?

Model Assumptions

- •Plant scaled to produce
- •10% of SA mandatory target for 2013
- •Current SA low sulphur diesel price
- •Assuming 1:1 CO₂ usage per biomass produced
- •Lipid productivity variable between 10 to 50 g/m²/day
- Waste water utilization
- •Flue gas CO₂ utilization

Assumption	Amount	Units
Plant Scale	Variable	На
Inoculum biomass	6.4	Tons
Biomass Productivity	30	g./m²/day
Lipid productivity	Variable	g/m²/day
Final Blomass concentration	1.0	g/L
Production days per year	365	Days
Batches per year	46	#
Total biomass harvested per year	90514	Tons/yr
Lipid Content	40	%
Lipid separation efficiency	70	%
Biodiesel produced	40 000	kL/yr
Selling Price	1.15	\$/L
Carbon dioxide used	90514	Tons/yr
Carbon trading price	26	\$/ton

www.csir.co.za

our future through science

Model predictions

our future through science

How can we make it feasible?

- Strain selection is critical
- No " one size fits all" strain available
- Optimize harvesting and oil extraction

Process development

- Critical to engineer solutions
- Optimize process for climate and strain at scale
- Integrated solution

Rationalization of Algal Development

- Fuel security •
- Environmental preservation •
- Community beneficial technology •
- Poverty alleviation •
- Food and Nutrition •
- Algal hub exploiting competitive • advantages
- Local isolates for implementation •
- Exploit SA's biodiversity and • climate
- Waste water and Flue gas • utilization
- Integrated process •

© CSIR 2006

CSIR's Algal Fuel Research Plan

Method development

 Developed an integrated isolation and screening protocol to maximize time

- Isolated 115 isolates from 46 samples
- Isolated 94% of the potential isolates

Synthetic mix of cultures

Figure 5: Flow cytometry plots of A26, A41 and A4 mixed sample

Figure 6: Flow cytometry plots of individual isolates after sorting with FCM

© CSIR 2006

www.csir.co.za

our future through science

Database

- ~ 20% of SA waters screened
- ~300 algal isolates
- > 100 positive for lipid production
- ~ 20 demonstrate potential for application to process

Slide 18

© CSIR 2006

Random mutagenisis – CSIR/UKZN

STRAIN	% LIPID PRESENT	% INCREASE	IMAGES	
WILD TYPE	26.62	_	39 U1	39 U4
39F U1	36.38	36.66	10 µm	10 µm
39F U4	31.46	18.18	39 U5	
39F U5	34.85	30.92	10 µn	
39F E1	46.95	76.37	39 E1	39 E2
39F E2	41.97	57.66	10 µm	10 µm
Slide 19		© CSIR 2006		

Table 2: Lipid content in wild type and mutant strains of isolate 99F

Laboratory Raceway

• First positive isolate scaled up to 100L lab raceway system

© CSIR 2006

Model predictions

Raceway Economics

Process integration (IRIP)

•Integrated Research Infrastructure Platform

Create local business opportunities based on: (Private sector or PPP)

Renewal of small rural towns

Renewable energy (solar, algal biodiesel, biogas)
Rural municipal service delivery (sanitation, water, energy)
Intensive agriculture (hydroponics, aquaculture, ...)

• Light industry, agri-processing

Use an Industrial Ecology approach to:Create sustainable local jobs

• Assist rural municipalities to improve service delivery (especially sanitation)

Candidate small towns (pop. 10-30 000)

System configuration for a small town

Algal Dream

- Community implementable technologies
- Poverty alleviation
- Exploit SA's biodiversity and climate
- Local isolates for implementation
- Integrated process
- Waste water and Flue gas utilization
- Environmental well being
- Fuel security
- Food security
- Develop Algal fuel centre of competence
 - Science councils
 - Academic institutes
 - Communities
 - Industry partners
- Expand Algal biotechnology industry in South Africa

our future through science

© CSIR 2006

Thank You

Dheepak Maharajh CSIR Biosciences <u>dmaharajh@csir.co.za</u> Tel: +27 82 650 8542

our future through science